STIFFENER CAPACITY / GUARD POST to
 Evolutiondeck EDECK625S1200-54

Load Reaction per Bolt

Stiffener Analysis

Stiffener spec $=$ Steel C-channel SSMA 8005300-97 $\times 9 \mathrm{in}$. lxx = 15.1 in $4 ; x c g=0.7$ in
Factored load on stiffener $=4200 \mathrm{lbs}$

```
Calculator Input
\begin{tabular}{ll}
29500 \\
\hline
\end{tabular}
Distance from neutral axis
to extreme fibers, c: 0.7
Moment of Inertia, I: 15.1
```

Beam Diagram and Calculator Input

Displacement
Moment and Maximum Bending Stress

w(x)={$$
\begin{array}{ll}{-\frac{Px(3\mp@subsup{L}{}{2}-4\mp@subsup{x}{}{2})}{48EI}}&{0\leqx\leq\frac{L}{2}}\\{P(L-x)(\mp@subsup{L}{}{2}-8xL+4\mp@subsup{x}{}{2})}\end{array}
$$
w(x)={$$
\begin{array}{ll}{-\frac{Px(3\mp@subsup{L}{}{2}-4\mp@subsup{x}{}{2})}{48EI}}&{0\leqx\leq\frac{L}{2}}\\{P(L-x)(\mp@subsup{L}{}{2}-8xL+4\mp@subsup{x}{}{2})}\end{array}
$$
L
L

$$
M(x)= \begin{cases}-\frac{P_{x}}{2} & 0 \leq \pi \leq \frac{L}{2} \\ -\frac{P(L-x)}{2} & \frac{L}{2} \leq x \leq L\end{cases}
$$

$M_{\text {max }}=M\left(\frac{L}{2}\right)=-\frac{P L}{4} \quad=-788 \mathrm{lbf-ft}$ lbf-ft Calc . Aasin $w_{\text {max }}=w\left(\frac{L}{2}\right)=-\frac{P L^{3}}{48 E T}$ \qquad
$\sigma_{\max }=\left|M_{\max }\right| \frac{\varepsilon}{I}=\left|\frac{P L}{4 Z}\right|=438$ psi psi \quad.
Shear \qquad

Induced stress from guard post 438 psi < 50000 psi $=0 \mathrm{~K}$

Bolt Pull-out Analysis (Industrial Fasteners Institute) IFI 7th Edition Inch Standards Book

Size	Bolt tensile Stress Area sq. in.	Bolt Thread Stripping Areas sq. in. per in. of Engagement	Internal Thread Stripping Areas sg. in. per in. of Engagement
$5 / 16-18$ UNC	0.0524	0.470	0.682

Engineering Analysis:
GR. 2: 5/16-18 Bolt (Galvanized)
($\mathrm{Ts}=74000 \mathrm{psi} \mathrm{Ys}=57000 \mathrm{psi}, \mathrm{Ss}=0.6 \mathrm{Ys}$)
(1) Bolt tensile strength $=\mathrm{As} \times \mathrm{Ts}=.0524 \times 74000=3878 \mathrm{lbs}>2100 \mathrm{lbs}=0 \mathrm{~K}$
(2) Bolt thread shear strength per inch $=0.470 \times .6 \times 74000=20868 \mathrm{lbs}$
(3) Length of engagement needed to avoid bolt thread stripping
$=$ bolt tensile strength / bolt thread shear strength per inch
= 3878 / 20868 = . 186 in
(4) Internal thread shear strength per inch = ASn X Internal thread shear strength $=0.682 \times 74000 \times 0.5=25234 \mathrm{lbs}$
(5) Length of engagement needed to avoid internal thread stripping = bolt tensile strength / internal thread shear strength per inch = $3878 / 25234=0.153$ in
(6) Engagement height of $5 / 16-18$ Nut $=19 / 64 \mathrm{in}=0.297 \mathrm{in}>0.186 \mathrm{in}=\mathrm{OK}$

Note: Design limit may be based on maximum lateral load from wind. Engineering / capacity of guard post to be determined by other.

STIFFENER CAPACITY / GUARD POST

03012019	REV 1.0	EDSTIFF625	JNACC	APPROVED

Section View

Plan View

Aluminum Post Base Flange Install per EDECK625S1200-54 Locate min. 1-in from metal deck edge. Through fastened using 4 @ $5 / 16^{\prime \prime} \times 3.5$ " Gr. 2 Bolts

